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SUMMARY

This preliminary design study was conducted by the Boeing
Vertol Company for the Eustis Directorate, USAAMRDL. The
purpose was to evaluate the practical impact of advanced
structural concepts and advanced composite materials on a
medium-range utility tactical transport helicopter config-
uration with specific payload, mission, and design require-
ments typical of modern (1974) procurement standards.
Structural efficiency and producibility/cost were emphasized.

A baseline metal helicopter was designed which met the speci-
fications. Sensitivity studies identified major structural
systems in which improved structural efficiency would have
significant impact on vehicle size and performance. These key
systems were studied and conceptual designs traded for struc-
tural efficiency, fail-safety, safety, cost/producibility,
reliability, maintainability, survivability, crashworthiness,
and detection avoidance, as well as general specification

conformance.

A free planet transmission concept was studied in some depth
for applicability to this vehicle, and detailed results are
reported in Volume II. An advanced structure helicopter was
developed for the same mission and gross weight as the base-
line, utilizing selected system concepts. A resized helicopter
was also configured with the same mission and payload as the
baseline, but taking advantage of the efficiency of advanced

materials systems.

The preliminary design investigation resulted in an advanced
configuration with a 15-percent reduction in gross weight, a
15-percent reduction in fuel required, and a l6é-percent reduc-
tion in rotor disk area compared to the baseline at competitive
production acquisition costs, without excessive development

risk.

The conclusion from this study is that advanced structural
concepts and materials technology are at a stage of develop-
ment wherein a reasonable level of applied development activity
can lead to demonstration and the introduction of significant
improvements into U. S. Army helicopter systems.

GompS aalddi et

oo

G o 3 e i, el




PREFACE

SRS e R

i This Jocument is Volume I of the final report on the results

of a preliminary design exercise entitled Advanced Helicopter
Structural Design Investigation; Volume II is USAAMRDL Technical
g Report 75-56B, Design Application Study for Free Planet Trans-

4 missions. The program was conducted by the Boeing Vertol
Company for the Eustis Directorate, U. S. Army Air Mobility a
Research and Development Laboratory, under Contract DAAJO02-74-
C-0066, from June 1974 through May 1975.

abuat g b

The work includes definition of a state-of-the-art aluminum
baseline medium range utility helicopter, redesign in advanced
composites with advanced structural subsystems, and resizing
of the advanced helicopter to perform the identical mission of
the baseline helicopter.

e ge

Technical direction was provided by Mr. L. Thomas Mazza, with
the free planetary transmission drive study directed by
Mr. E. Rouzez Givens, both of the Eustis Directorate, USAAMRDL.

The study was conducted at the Boeing Vertol facility in Ridley
Parx, a suburb of Philadelphia, Pennsylvania. The principal
Boeing contributors werc Donald Hoffstedt, Program Manager:;
Sidney Swatton, Airframe Design; John Mack and William Rumberger,
Transmission Design; Erwin Durchlaub, Structural Analysis;

Frank Sauter, Cost Engineering; Arling Schmidt, Weights Analysis:
Robert rinckney, Manufacturing Technology: David Harding, R&M, ;
Survivability/Vulnerability; John Schneider, Preliminary Design; :
and Har' ' Rosenstein, Performance and Sizing.
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1. INTRODUCTION

1.1 OBJECTI/ES
The objectives of this study were to:

® Define advanced structural configurations using the
latest analytical, material and fabrication technology
to satisfy requirements of structural efficiency,
fail-safety, safety and producibility/cost.

® Conduct a risk/feasibility assessment of advanced
structural concepts to determine the areas of greatest
payoff and to define potential high technical risks.

® Identify supporting research required to achieve the
necessary advanced structural technology, as determined
from preliminary designs and associated analysis.

For the study, Eustis Directorate, USAANRDL, supplied a Speci-
fication for an Advanced Structures Study (SASS) for a Medium-
Range Utility Transport Helicopter (MUT). This specification
(Appendix A) formed the basis for preliminary conceptual de-
signs of the aircraft to meet specific mission capabilities.

To meet the stringent standards of the SASS, the initial task
included sizing a modern baseline metal aircraft structure and
subsystem, and providing a standard against which advanced
structures could be evaluated. When the baseline configuration
was determined, each of the various subsystems was studied

and conceptualized both as components and as systems, to de-
termine candidate components/systems which might decrease the
structural weight of the airframe system (fuselage, controls,
rotor hub, transmission, landing gear, drive shafts, etc.)
while meeting th: basic requirements of the SASS. These con-
cepts were screened, evaluated, and reviewed with USAAMRDL.

The second task included a more detailed comparison of struc-
tural concepts, rating of viable options, and recommendation

to USAAMRDL of the most promising advanced concepts. The sec-
lected configuration was further defined, analyzed, and >
insofar as the conceptual nature of the study required.

The third task involved a comparison of weight and mission per-
formance between the baseline and advanced configuration while
maintaining common geometry. A further comparison was per-
formed after resizing the advanced structures configuration to
perform the identical mission of the baseline ccnfiguration.
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The final task involved assessing risk and feasibility of the
selected advanced structural design and identification of the
highest technical risk areas plus additional supporting re-
search requirements necessary to effectively implement advanced
structural concepts.

Most of the detailed concept evaluaticn centered around the
fuselage, which was identified as the maximum pay-off structure
for improvement of payload/gross-weight ratios. All systems
were considered, however, in identifying potential advanced
concepts and evaluating their relative impact on the final
weight and cost of the aircraft.

1.2 DEVELOPMENT OF PRELIMINARY DESIGN CONCEPTS

The sizing and preliminary design of a baseline niodern state-
of-the-art helicopter was performed using HESCOMP, the Heli-
‘opter Sizing and Performance Computer Program developed for
NASA by Boeing Vertol Company under Contract NAS2-6107. The
utility designation with litter loading requirement, the re-
quirement for transportability in a C-130 and a C-141, the nap-
»f-the-earth maneuverability, and the hot-~day hover requirement
1zed the cabin, the rotor height, the tail rotor and the main
rotor, respectively. The reliability, maintainability, surviv-
ability, and vulnerability requirements, plus the specified
maneuver load factor of 3.50, and requirements for fail-safety
and design-to-cost, forced a reevaluation of historical weight
trend curves upon which HLSCOMP is based. The differences be-
tween a baseline helicopter derived from traditional weight
trends and a baseline helicopter reflecting modern design
practices (see SASS, Appendix A), are presented in Table 1.
Qualitative impacts of control factors on structural weight
are shown in Figure 1.
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TABLE 1. MUT BASELINE AIRCRAFT PRELIMINARY
DESIGN COMPARISON

Historical Effect of
Design Modern Design
Parameter Prediction Requirements
Gross Weight (1b) 8,477 9,544
Weight Empty (1b) 5,583 6,431
Rotor Diameter (ft) 36.7 38.9
Installed SHP 1,843 2,065
Mission Fuel (1lb) 1,437 1,655
Payload (1b) 960 960
VCR (Kt) at S/L Std 150 ¥
ROC (fpm) from HOGE,
4,000 ft, 95° 450 &=
Mission Endurance (hr) 2.3 2.3
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(1) Airframe Unit Weight Definition may be found in MIL-STD-1374.

Figure 1. Control Factor Effects on Airframe Unit WeighQV
Gross Weight for Conventional Design (Qualitative).
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2. BASELINE HELICOPTER

The HESCOMP sizing results for the MUT baseline aircraft, with
weight trend corrections based on Army UTTAS design experience
(reflecting procurement requirements similar to Appendix A),
are presented in Tables 2 and 3. A baseline design description
follows the tabulations.

TABLE 2. BASELINE AIRCRAFT SIZE

Length (Body and Tail Boom) 40.25 ft
Length (Cabin) 6.0 ft
Length (Body) 19.8 ft
Length (Tail Boom) Incl Stinger 20.3 ft
Main Rotor Location 12.3 ft
Cabin Width Outside 8.0 ft
1 Horizontal Tail
1 Aspect Ratio 4.28
. Area 21.1 sq ft
3 Span 9 45 Bt
1 Mean Chord 2.22 £t
; Taper Ratio 0.66
) Thick.ess/Chord 0.15
] Vertical Tail
] Aspect Ratio 1.722
1 Area 21.6 sq ft
1 Span 5.67 ft
b Mean Chord 3.3 ft
] Taper Ratio 0.43
} Thickness/Chord 0.23
4 Main Rotor
; Diameter 38.9 ft
Solidity 0.100
Disc Loading 8.0 psf
Number of Blades 4
Blade Twist -12.0 deg
Cut-out/Radius Ratic 0.230
Tip Speed 750 fps
Tail Rotor
Diameter 7.8 ft
Solidity 0.227
Net Disc Loading 13.8 psf
Number of Blades 4
Blade Twist -9.0 deg
Blade Cut-out/Radius Ratio 0.250
ri Tip Speed 700 fps
u Main Rotor/Tail Rotor Gap 0.5 ft




TABLE 3. PRELIMINARY DESIGN BASELINE WEIGHTS

Item Weight Total Weight
Item (1b) (1b)
Propulsion Group
Main Rotor Group
Rotor Blades (4) 563
Rotor Hub 364
Drive System 1047%*
Primary Engines (2) 468**
Engine Installation 186
Fucl System 190
2818
Structures Group
Horizontal Tail 42
Tail Rotor 56
Fuselage (includes Vertical
Tail) 1067
Landing Gear, Nose 68
Landing Gear, Main 217
Landing Gear, Tail Bumper 11
Engine Section 135
1596
Flight Controls Group
Cockpit Controls 67
Main Rotor Controls, Lower 263
Main Rotor Head Controls 178
Horizontal Stakilizer
Controls 19
Stability Augmentation System _35
562
Weight of Fixed Equipment 1455
Weight Empty 6431
Fixed Useful Load 498
Operating Weight
Empty 6929
Payload 960
Fuel 1655
Gross Weight 9544

*Main rotor drive system rating is 1604 hp. Tail rotor drive
system rating is 182 hp.

**pPower required for baseline helicopter, sized for takeoff at
4000 ft density altitude and 95°F, and 450 fpm vertical rate
of climb (at T/W=1.03, both engine operative) is 2065 max
standard SL static shaft horsepower.

—
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2.1 MUT BASELINE DESIGN DESCRIPTION

The baseline MUT aircraft, designed to comply with the specifi-
caction for an advanced structures study for medium-range util-
ity transport helicopter (Appendix A), is shown in Figure 2.

The design features a single main-rotor system employing the
hingeless composite rotor blade concept and is powered by twin
advanced~-technoloyy engines. The aircraft incorporates modern
state-of-the-art structure and is supported on a tricycle land-
ing gear with the addition of an attenuating tail bumper.

The pilots' comnartment accommodates a crew of two. The cabin
width and height is sized for seven passengers and will meet
the specified mission requirements of four combat equipped
troops and a crew of two. The cabin width is sized for four
troops or three litters placed laterally (see Figure 3). The
internal cross section dimensions resulting from the litter
requiremenrts are the same as those of the current YUH-61A
(UTTAS) ; hence, the crew compartment and the cabin width and
height are practically identical.

The aircraft missions include aeromedical evacuations, and the
transport of special teams and/or equipment or supplies. An
external hook 1is provided to transport oversized loads up to
2000 pounds (see Figure B-1 in Appendix B).

2.2 GENERAL ARRANGEMENT

The aircraft fuselage consists of three sections: cockpit area,
mid-fuselage area, and the tailboom/empennage.

The cockpit arrangement provides the crew with maximum crash
protection, good visibility in all directions, normal ingress
and egress through hinged jettisonable side doors, emergency
egress through an overhead window, shatterproof windshields,
and windshield wipers. Flight controls, avionics, and nose
landing gear are also located in zid around the cockpit area.

The mid-fuselage area contains the troop/cargo compartment,
fuel system, and the equipment bays. Floor and ceiling attach-
ments for troop seats, litters, and cargo are provided in the
cabin area. This section absorbs loads imposed by the engines,
main rotor transmission, and other components of the dynamic
rotcr system, landing gear, and tailboom. The cakbin area is
enclosed by two doors on each side. A forward hinged door is
used for litter loading and an aft sliding door for troop
ingress and egress. With both doors open, a width of 50 inches
is provided for loading cargo.

The self-sealing fuel cell is located just aft of the cabin
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and 1s conmpletely enclosed by airframe structure. The elec-
tronic equiprnent compartments with large access doors are lo-
cated on cach side of the aircraft, outboard and adjacent to
the fuel cell compartnent and just aft of the main landing
gear well. The entines, main rotor transmission, and other
components of the dynamic rotor systen are located ahove the
cabin ceiling.

The tailboom supports the tail rotor, shafting, gearboxes,

tail punper, and vertical and horizontal stabilizers (see
Figurec 4).

2.3 AIRFRAME BASELINE DESIGN

The primary structure is a modified semimonocoque construc-
tion consisting basically of aluminum alloy skins, stringers,
and franes. Stainless steel and/or titanium is used where
feasible (e.g., in firewalls and fittings). Generous use is
also made of fiberglass, bonded honeyconb, and other composite
materiales in secondary structure (doors, fairings, etc.).

The cockpit area structure is arranged to provide good struc-
tural continuity with the mid-fuselage section for crash pro-
tection. llard points are provided for attaching the nose gear.
The cockpit section is spliced to the mid-fuselage section at
sta 78.

The mid-fuselage structure, above the cabin ceilinqg, consists
of buttline longitudinal beams and built-up torque boxes which
extend almost the full length. This rugged structure supports
the engines, main rotor transmission, and all other conponents
of the dynamic rotor system. Hardpoints are also provided to
accorriodate the main landing gear and a removable carqgo hook

in the aft end of the cabin area. The cargo operator's station
is adjacent to the hook access opening in the floor. The floor
structure consists of lateral floor frames and longitudinal
beams, allowing continuity of structure from the fuselage nose
to tailboom and accommodating the floor loading requiremnents.

The tailboom is shaped to provide an effective box structure

required for the tail rotor, empennage, and tail bunper. The
tailnocr. and the mid-fuselage section have a field splice be-
tween them at sta 239,

The vertical stabilizer supports the tail rotor, gearbox, and
shafting. Construction is basically aluminum alloy two-spar,
rib, skin, stringer type. The spars extend into the tailboom
and are mechanically attached.

The variable incidence horizontal stabilizers are the sane
type construction as the vertical stabilizer. Each stabilizer
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has a lug located inboard on the front spar for attachment to
a common torque tube through the tailboom (see Figure B-2 in
Appendix B).

2.4 LANDING GEAR

The landing gear is a tricycle type with the main gear attached
to the aft side of the cabin aft bulkhead. The nose gear 1is
attached beneath the cockpit section.

Each main gear consists of a two-stage oleo having kneeling
capability. These features also permit survival in a 95th per-
centile crash by absorbing energy prior to structural deforma-
tion of the airframe.

The nose gear is a single, 360-degree swiveling, nonretract-
able oleo strut with dual wheels. A viscous shimmy damper and
swivel lock are incorporated (see Figure 5).

The attenuating tail bumper is installed to protect the tail-
boom from structural damage during high-angle flared landings
(vertical impact capability of 18 fps).

Ground steering is accomplished by the tail rotor and differ-
ential braking of the main wheels.

2.5 PROPULSION SYSTEM

The propulsion system includes two new advanced technology
engines with particle separators in the air induction system,
exhaust system including infrared suppression, engine compart-
ment cooling, compressor bleed air/pneumatic system, engine
mounting with isolation units, propulsion system controls and
instrumentation, fuel system (see Figure 6), lubrication sys-
tem, fire detection and extinguishing system, also the nacelle
group, comprising fixed and hinged segments of engine cowling
(see Figure 7).

The air-induction subsystem consists of a semiannular inlet
and an aerodynamic-shaped shroud which houses the nosebox
transmission.

The exhaust subsystem consists of a titanium tailpipe and a
titanium ejector shroud to provide ample engine compartment

cooling.

The infrared suppression assembly is readily installed upon
removal of the tailpipe and ejector shroud.

Engine bleed air provides anti-icing protection, and heating
and ventilation for the nacelle inlets.
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Figure 7. Propulsion and Drive System Arrangement.
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The fuel system consists of a single self-sealing, crash sur-
vivable fuel tank and supply lines designed for ballistic pro-
tection. Independent collector tanks, integral with the main
fuel tank, feed each engine. Normal feed and crossfeed are
accomplished by suction pumps on each engine. Aircraft re-
fueling is accomplished on the ground from easily accessible
locations. Frangible fittings to tank attachments and self-
sealing breakaway fittings are typical throughout.

The fire detection and extinguishing system consists of sensing
devices in each engine. Two extinguishing bottles are provided
with discharge selectivity from the cockpit into the firebox
areas.

2.6 DRIVE SYSTEM

The drive system consists of two-engine right-angle-nose, main
rotor, intermediate, and tail rotor transmissions; accessory
gearboxes; and interconnecting sectionalized shafting. All
shafting, except that trom the engine to the nose trans-
mission, is aluminuwm alloy tubing with flexible steel couplings
between sections (wc¢e lFigure 8).

The lubrication =ystem for the main rotor transmission consists
of a primary an! a backup system. The primary system normally
supplies cooling o1l to the generator (on the aft accessory
gearbox), bearings, gears, and return to reservoir. A section-
alized oil cooler is located on the accessory section of the
main rotor transmission. In an emergency, the backup system
supplies 0il to critical bearing and gear meshes only, thereby
limiting flight time. Engine oil is also cooled through the
sectionalized cooler on the accessory section. The forward
accessory gearbox and the intermediate and tail-rotor trans-
missions have completely integral air-cooled systems and re-
guire no separate coolers. The advanced technology engines

may incorporate a completely self-contained lube system.

2.7 FLIGHT CONTROL SYSTEMS

Flight control of the aircraft is accomplished by a redundant
mechanical system coupled with inputs from a redundant SCAS
(Stability Control Augmentation System) to the hydraulic actu-
ators controlling the main and tail rotors (see Figure 9).

The main rotor actvators impart motion to the nonrotating ring

of the swashplate assembly. This motion is transferred to the

rotating ring of the swashplate which provides pitch control to
the rotor blades through pitch links.

The tail rotor actuator imparts motion to the rotating sliding

sleeve on the tail rotor shaft. The sleeve transfers pitch
control to the tail rotor blades through pitch links.
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Figure 9. Dual Mechanical Flight Control System.
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2.8 ELECTRICAL SYSTEM

The primary electrical power supply is provided by the ac gen-
erators, one on each accessory gearbox (AGB). One generator
is capable of supplying the entire aircraft electrical power
if necessary. The generators also provide for dc power by
converting through transformer/rectifiers.

A 28-volt battery (located in the nose avionics compartment)
is used for engine starting and is interlocked into the
electrical system for emergency use.

2.9 AVIONICS

The avionics equipment for the aircraft provides fixed commu-
nications and tailored navigation capabilities to the crew.
All avionics equipment is accessible for ease of maintenance.
Most of the equipment 1s located in the fuselage nose aud some
in the bays in the sides of the fuselage just aft of the main
landing gear well (see Figure 10).

The avionics equipment is listed in Table 4.

2.10 HYDRAULIC SYSTEMS

The utility hydraulic system operates at 3000 psi. It supplies
power for kneeling/unkneeling of the main landing gear, and
serves as an emergency source of hydraulic pressure for the
flight control system. The system consists of an accumulator,
an ac electric-driven hydraulic pump, a two-stage handpump,
plus filters, relief valves, etc.

The flight control hydraulic system consists of two independent
systems, with the utility system as an emergency backup in the
event of dual system failure. Each system is completely sepa-
rated from the other and consists of pump-cooler unit, hydrau-
lic component module, accumulator, and associated hydraulic
lines.

2.11 MAIN ROTOR BLADES

The aircraft's main rotor system consists of four hingeless
blades. The inboard end of each blade is designed to provide
the flexibility required for flapping and lead-lag motions.
The blades are basically of composite structure, including a
fiberglass D-spar, titanium root end fitting and leading edge,
and a Nomex honeycomb core. Provisions are incorporated for
blade lag damping, erosion and lightning protection, deicing
and tuning. The blade design achieves the best balance between
weight and strength (load paths and vibratory forces) and in-
corporates the Integral Spar Inspection System (ISIS) for
failsafe operation (see Figure 11).
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TABLE 4. AVIONICS EQUIPMENT

1 Unit

1 Qty per Weight

% Aircraft Description Identification (1b)

1 Communications
2 VHF-rM Radio Set All/ARC-114 7.0
1 VHF-AM Radio Set AN/ARC-115 7.2
1 UHF-A!1 Radio Set AN/ARC-116 7.5
3 Interphone Control C-6533/ARC 1.8

Automatic Direction Finder, AN/ARN-89

o e bt o

1 Receiver, Radio R-1496( ) /ARI-89 6.8
1 Control, Radio Set C-7392( )/ARN-89 3.1
1 Amplifier Impedance AM-4959( )/ARN-89 0.2
1 Antenna, Loop AS-2108( )/ARN-89 2.1
1 ADF Compensation Network 0.2
Gyro Magnetic Compass Set, AN/ASN-43
1 Gyro, Directional CN-998( )/ASl-43 5.5
1 Transmitter, Induction T-611( )/ASN 1.2
Compass
1 Compensator, Magnetic Flux CN-405( )/ASN 0.2
Transponder Set, AN/APX-72 A
1 Receiver-Transmitter RT-859/APX-72 15.3 !
1 Control C6280A(P) /APY 3.0
1 Mounting MT3809/APX-72 1.7
Communication Security Set, TSEC/KY-29
3 Communication Security Set TSEC/KY-28
3 Control Indicator Assembly C-8157/ARC
3 Mounting MT-3802/ARC
Auxiliary Equipment
b Transponder Test Set TS-1843/APX 2.8
1 Mounting MT-3513/APX 0.5
1 Computer, Mark XII KIT-12/TSLC 14.5
1 Mounting (Vibration MT3949A/U 1.5
Isolated)
VOR Radio Set, AN/ARN-82
Receiver, Radio R-1388/ARII-82 10.

ol el o N S

Glide Slope Market Beacon, AN/ARII-58

1

Control

Mount

Tactical Landing System

LORAN C/D Airborne
Navigation System

Receiver, Radio

C-6873/ARN-82
MT~3600/ARN-82
AN/ARN( )
AN/ARN( )

R-844/ARN-58
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2.12 TAIL ROTOR

The tail rotor consists of a tail rotor head, controls, and
blades. The tail rotor head is driven by the torque trans-
mitted from the tail rotor drive shaft, through the tail rotor
transmission, to the tail rotor shaft (see Figure 8). The

hub adapter is splined and fastened to the tail rotor shaft.

A rotating sleeve around the tail rotor shaft with pitch links
attached, transfers pitch control to the blades. The head con-
sists of two short fiberglass flex straps mounted perpendicular
to each end of the straps; the complete assembly is bolted to
the hub adapter. The blade design consists of Nomex honeycomb
and fiberglass with 1einforcements where necessary. Deicing,
erosion, and balancing provisions are incorporated (see

Figure 12).

<.13 TRANSPORTABILITY

The C-141 aircraft is capable of transporting two MUT helicop-
ters with at least a 6-inch minimum clearance. (See Figure
B-6 in Appendix B.) The following tasks are accomplished
before loadiny:

1. Fold main rotor blades.

2. Kneel main landing gear.

3. Remove tail rotor blades from the aft helicopter and
reposition tail rotor blades on the forward helicopter.

4. Remove tips from the vertical and hori-ontal
stabilizers.

5. Remove tailcones.

6. Remove tail bumper and fairing from aft helicopter
only.

The C-130 aircraft is capable of transporting one MUT helicop-
ter when the following tasks are accomplished:

1. Fold main rotor blades.
2. Kneel main landing gear.
3. Reposition tail rotor blades.

4. Remove tips from the vertical and horizontal
stabilizers.

The C-5 aircraft is capable of transporting six MUT helicopters
simply by folding the main rotor blades and kneeling the main
landing gear.
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3. ADVANCED CONCEPT DEVELOPMENT

3.1 AIRFRAME - ADVANCED STRUCTURAL CONCEPT CANDIDATES

Using the MUT baseline as the configuration, a sensitivity
trade was performed to identify the maximum payoff areas for
welght reduction. The results of this analysis are shown in
Figures 13 through 17. Each major subsystem was examined by
assuming weight reductions of 0, 10, 20, 30 and 40 percent with
respect to the baseline. The "cascading" or multiplying effect
by the single subsystem weight reduction on other baseline sub-
systems was accounted for in the exercise.

Fuselage structure and drive system weight reductions are
significantly more rcwarding than the other major areas. Since
much of the weight in the drive system is gear steel and
bearings, the fuselage was identified as the major payoff area
for advanced materials.

The conceptual design effort on application of advanced materi-~
als to the MUT centers largely around the airframe structure.
Innroved structural efficiency of the drive cystem was approached
through study of an advanced concept free planetary drive sys-
tem (discussed later in this section). Other major subsystems
were considered and a number of promising configurations were
evaluated.

The candidates for each system were evaluated for conformance
to design objectives on a point rating system as better than
or poorer than the metal baseline design. For example, fuse-
lage structural efficiency rating was approached as follows:

Strength/Weight (Structural Efficiency)

Specific factors in comparing primary structure concepts were:

e Continuity of load paths
Number and location of joints
Complexity of fittings

Dual function load paths
Minimum gauge inefficiencies
Structural element size

Number of cutouts

Material structural efficiency
® Construction efficiency (special cases)

The results of the screening/selection process are presented
in tabular form in the discussion of each major subsystem.
Comparative rankings among advanced concepts were used in sel-
ecting the least cost approach, based on a common material
system. Thus, the selections were reduced to such factors as:
the number and complexity of structural components, the number
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of fasteners and assembly attachments, adaptability/utilization
of production processes (such as filament winding, tape wind-
ing, broadgoods wrapping, automated tape layup, pultrusion), etc.

3.1.1 STRUCTURAL BREAKDOWN

For the purposes of this investigation, the fuselage was divid-
ed into major components or elements producible singly or in
combination. Factors such as tooling, materials and process
compatibility, field repair, transportabil.ty, replacement of
damaged structure, etc., influenced major assemblies. The
number of joints were kept to a minimum consistent with these

factors.

Table 5 lists the components which are included in the ad-
vanced concept designs as well as the structural category of
each component (primary or secondary).

TABLE 5. STRUCTURAL CATEGORY OF AIRFRAME
MAJOR ASSEMBLIES

Type ot
Assembly Structure

Cockpit enclosure

Forward box frame assembly

Upper deck and buttline beam assembly
Floor panel and underflow structure
Bulkhead and rear box frame assembly
Fuel and electronics bay structure
Tailboom assembly

Vertical stabilizer assembly
Horizontal stabilizer assembly

10. Pilots door

11. Side sliding door

12. Side hinged door

13. Engine fairing

14. Tailboom drive shaft fairing

15. Nose electronics door

16. Side electronics door

17. Tailcone

18. Access panel, upper deck

19. Tail skid

20. Tail skid fairing

21. Vertical stabilizer tip

22. Transmission cooling duct

23. Leading-edge fairing (vertical stabilizer)
24. Transmission fairing

25. Intermediate transmission box fairing
26. Door track

O 00~ U =N
¢« 2 e e 4 e e e &

nnunnunmnnnhnninnnnmnovogwgoogd

P = Primary structure

S = Secondary structure
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3.1.2 CONCEPTUAL DESIGN STUDIES

The heclicopter airframe has a relatively light loading inten-
sity compared to high-performance military fixed-wing aircraft.
Thin laminates for skin and support structure will be reqguired
when designing in composites to achieve lower airframe weight
than conventional aluminum construction. The relatively light
loading spectrum for MUT inevitably leads to gauge limiting
problems (minimum practical manufacturing ply layup is in
excess of calculated design thickness required). This con-
straint adversely impacts airframe structural efficiency and
limits the weight gain of composites over aluminum alloy.

Three main composite design categories comprising different
structural approaches were considered to improve structural
efficiency:

e Category 1 - Honeycomb sandwich hybrid

® Category 2 - Skin/stringer/frame panel molding with
selected use of stabilizing foam

® Category 3 - Filament wound, or geodesic, or mix
of categories 1, 2 and 3

Within each category, alternative structural arrangements of
certain components were considered.

A series of structural design studies was conducted to provide
numerous competitive approaches for selective evaluation:;

these studies are presented as reference drawings in Appendix B.
The candidate structures were then rated against the primary
and secondary selection factors; these ratings are presented

in Table 6 (category 1 concepts shown on sheet 1, category 2

on sheet 2, and category 3 on sheet 3). 1Isometric sketches
illustrating each configuration are presented in Figures 18
through 31. All ratings were in respect to the baseline metal
configuration which was defined to meet the SASS requirements
for each selection parameter. The comparative production costs
of each concept are shown in Figure 32.

3.1.3 RELATIVE COST

The relative costs of each candidate were estimated assuming
complete utilization of graphite (AS)/epoxy at a 1974 produc-
tion quantity price of $50/1b. (The comparable 1974 price of
sheet aluminum is $6/1b.)

3.1.4 MATERIAL STRUCTURAL EFFICIENCY

A nunmber of material systems were screened against typical
helicopter loading conditions. These systems, the mechanical
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strength properties used for screening, and their relative
structural performance under each of the loading environments
are presented in Table 7.

3.1.5 OTHER FACTORS

Other considerations such as safety, fail-safety, and SASS
cenformance elements of detection avoidance, crashworthiness,
repairability, maintainability, and survivability were rated
in comparison to the bascline configuration.

3.1.6 SELECTION AND LOGIC FOR FINAL STUDY CONFIGURATION-
AIRFRAME

Table 6 shows that two concepts, namely F and C, both similar
honeycomb-sandwich designs, emerged as joint winners, each with
a rating total of 5.

However, the conformance element ratings in the same table
reveal a low rating for concept C due to the lack of a field-
splice joint for removal of the tailboom and empennage,
whereas concept F incorporated a field-splice joint.

Concept F (Figure 23) was selected for its general superiority
over the other concepts, but the final selection for further
refinement also included the feature of an exterral mechanical-
attachment tailboom~splice joint as shown in the circled view
of concept E (Figure 22, circled view on right-hand side).

An alternative method for joining the tailboom to the cabin
structure in the fuel bay, stations 163 to 239, via a horizon-
tal joint at WL175 and a vertical joint at station 163 was
investigated (see Figure B-19). Despite the redeeming features
of this method such as good fail-safety and joirc-attachment
access, the arrangement was considered cost-prohibitive due
mainly to problems associated with fabricating long field-
splice joints which are required to align simultaneously in
two planes (vertical and horizontal) and the number of splice-
attachment bolts involved.
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Table 7. Comparison of Material Systems and Helicopter Loading Conditions

1 2 3 4 5 ] 7
Prelininary Design Matenial GRAPHI 7 KEVLAR 49/ | SGLASS/ E GLASS/ GRAPHITE HYBRID, 107576
Seletion tor Maximuin AS/EPOXY EPOXY EPOXY EPOXY AS/THERMO- | GR K48/ {REF)
Structural Ethciency PLASTIC EPOXY
1181 STYLE) {50 50)
MATERIAL PRQPME_}
OENSITY @) PCt 0055 0050 0.066 0065 0058 0.0525 0.101
STRENGTH
Tension 0° KSI 126 200 219 604 173 147 73
Compresvion 0° KSI 165 40 10 648 132 94 65
Shaar * 45" K51 50.2 28 364 143 456 286 47
Fatgue (R 01107 ¢ KSi 432 432 218 18 432 432 8
MODULUS
Axial 02 MS| 185 "o 6.3 38 168 2 103
Shear + 457 MSt 45 30 17 08 36 3.t 39
SPECIFIC PROPERTIES
Flu » 0° KSI/PCI 3380 4000 3320 929 2982 2800 782
Fcu o 0° KSi PCI 3000 800 1870 997 2276 1790 733
wap 459 KSI/PCI 913 560 662 220 786 545 465
v (R 010 KSI/PCH 785 864 326 12 745 824 79
Elp O° MS5I/PCIL 336 220 9% 58 269 213 102
Gip +45° MSI1/PCH 82 61 26 125 62 59 385
QMPARATIVE SPECIFIC PROPERTIES
STRENGTH With respect
Tension oGl 10 1183 0982 0.275 0.882 0828 0.231
Compression e 8 base 10 0.267 0557 0.332 0.759 0597 0.244
Shear equal 10 10 10 0613 0.605 0.241 0.861 0597 0504
Fatigue 1.0 1101 0415 0154 0.449 1.050 a.101
MODULUS
Axial 1.0 0.655 0.283 0.173 0.860 0.634 0.304
Shear 10 0741 0317 0.152 0.756 0718 0.471
WEIGHT (Reciprocalt 10 1100 0.833 0.846 0948 1.048 0545
RANK '_'_..
Distribution ot Material tor various
critical loadings and structural element
configuration
@ Lesser of Tension or Compression 1 6 4 ] 2 3 7
@ 207, Tension or Compression 1 5 4 7 2 3 6
0% Shear
© o0 1 4 5 7 2 3 6
40% Fanigue
@ Sandwich  Mimimum Gage 2 1 5 6 4 3 7
B80% Weight
20%
(®) Skin'Stringer Mimimum Gage 1 4 5 7 2 3 6
30% Weight
s ey
@ Sandwich and Skin/Stringer 1 4 6 § 3 2 7
50% D)
50%
© 60% Tension or Compression 1 5 4 7 2 3 6
25% Shear .
10% £ Modulus
5% G Modulus
() sandwich Minimum Gage & Modulus 1 2 5 6 4 3 7
80% Weight
10%
5% E Modulus
5% G Modulus
() SkinfStringer Minimum Gage & Modulus 1 4 5 6 2 3 6
30% Weight
50%
12% E Modulus
8% G Modulus
@ Hybro 1 2 5 6 4 3 7
0%
50%
1 4 5 6 2 3 7

OVERALL RANKING
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Figure 18. Concept A - Graphite AS/Kevlar Epoxy Honeycomb Sandwich.
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Figure 21. Concept D - Graphite AS/Kevlar Epoxy Honeycomb Sandwich.
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